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ABSTRACT 
J 

An analysis has been carried out to determine the heat transfer characteristics 

G for turbulent flow of a heat generating fluid in a circular tube with wall heat 

transfer. The internal heat generation is uniform over the tube cross section, but tr 

may vary longitudinally in an arbitrary manner. 

vary in an arbitrary way in the longitudinal direction. 

The wall heat transfer may also 

The analysis applies along 

r( the entire length of the tube, that is, in thermal entrance as well as f'ully- 

developed regions. 

ity profile throughout the length of the pipe. 

for fluids with F'randtl numbers ranging from 0.7 to 100 for Reynolds numbers from 

50,000 to 500,000. The extension of the results to include radial heat source 

\ I 

The fluid is assumed to have a fu l ly  developed turbulent veloc- e 
f 

A 
Numerical results are presented 

variations is indicated. 

NQMENCLATURE 

specific heat at constant pressure cP 

Dn coefficients in series expansion of temperature for case of internal heat 

sources; D;, coefficients when heat source is a function of radial position 

d tube diameter, 2r0 

En coefficients in series expansion of w a l l  temperature for case of internal- 

heat sources) Dn%(r:) 

Fn coefficients in series ex-aasioii of ;la11 teqerztwe for C ~ S P  n f  wal.1 heat 

transfer 

G ( r + )  fully developed temperature distribution for case of uniform wall heat flux 

H ( r + )  fully developed temperature distribution for case of uniform .,internal heat 

generation 

h local heat trans fer coe f f ic ient 

.. 
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M ( r + )  f u l l y  developed temperature distribution for case of heat sources dependent 

I on r 

Nu local Nusselt number, hd/k 

Pr Prandtl number, u/a 

Q rate of internal heat generation per  unit volume 

9 local heat transfer rate per unit area at tube w a l l  

r radial coordinate measured from tube centerline; ro, tube radius 

r+ dimensionless radial coordinate, r,/m/n; r$ dimensionless tube radius, 

r 0 m / u  
- 

Re Reynolds number, ud/u 

T absolute temperature; Tw, absolute w a l l  temperature; Tb, absolute bulk fluid 

temperature 

t temperature; to, temperature of fluid entering tube (a constant); t*, differ- 

ence temperature defined in equation (5); t5, bulk fluid temperature; tw, 

tube wall temperature 
- 

U fluid velocity in the x-direction; u, mean fluid velocity 

u+ dimensionless velocity in x-direction, u/,/a 

X axial coordinate measuring distance from tube entrance 

X+ dimensionless axial coordinate, x/d 
- 
X dummy integration variable 

Y radial coordinate measuring distance inward from tube wall, ro - r : -:,. ' 

dimensionless coordinate, y 

molecular diffusivity for heat, k/pcp 

T~ p 'u 
Y+ n/ 
U 

p2 eigenvalues of equation (17a) 

Y 

a- 

dimensionless total thermal difflrsivity, (a + E~)/u 

Eh,Em 

u kinematic viscosity 

P fluid density 

eddy diffusivities for heat and momentum 
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70 shear stress at tube w a l l  

cp eigenfunctions of equation (17a) 

If f'unction of x given by equation (16) 

Subscripts : 

fd denotes flrlly developed heat transfer condition 

Q denotes situation where Q # 0 and q = 0 

denotes situation where q # 0 and Q = 0 
T Y  

WI 
INTRODUCTION 

Flowing fluids with internal heat generation are found in many sectors of modern M 

P 
8 
7 technology. Such flows may occur, for example, in fluid-f'ueled nuclear reactors and ' chemical process equipment. The basic flow passage in many of these systems is the 

circular tube, and it is this configuration which is selected for analysis here. 

Specifically, we are concerned with turbulent pipe flows in which the internal 

heat generation is uniform across the section, but which may vary in an arbitrary 

manner along the length. Furthermore, the heat transfer at the tube w a l l  is also per- 

mitted to take on an arbitrary longitudinal variation. An example of a situation 

where such variations may OCCUT is in a nuclear reactor core in which the neutron flux 

varies with position. 

The findings of the analysis can be used to calculate the heat transfer charac- 

teristics over the entire length of the passage, that is, in the thermal entrance as 

well as far downstream. Numerical results are provided over the Reynolds number range 

f r o m  50,000 to 500,000 fzr El.ar?,dtl numbers varying from 0.7 to 100. 

Previous analyses (1,2,3) of turbulent pipe flows with internal heat generation 

have been confined to the condition of ful ly  developed heat transfer, and hence, the 

results pertain to the portion of pipe beyond the thermal entrance region. Also, 

these investigations were carried out under the restrictions that the internal heat 

generation and w a l l  heat transfer are both longitudinally uniform. Laminar pipe flows 



, 
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have, however, lent themselves more readily to analysis. Results applicable over the 

entire pipe length have been given (4) for the general situation where the internal 

heat generation takes on arbitrary longitudinal and radial variations, while the w a l l  

heat transfer varies arbitrarily along the length. Of course, turbulent flows are of 

greater importance as they are almost always encountered in practice. 

GENERAL ANALYTICAL CONSIDERATIONS 

The system to be analyzed is pictured schematically on figure 1. Our attention 

is directed to the portion of the tube to the right of 

taneously experiences an internal heat generation 

q(x). The functions Q and q are permitted arbitrary variations with x. The 

fluid, moving from left to right, possesses a filly developed turbulent velocity pro- 

file which is unchanging with length. 

x = 0, is taken to be uniform at the value 

transfer characteristics of the fluid at all positions along the tube. 

x = 0 where the fluid simul- 

Q(x) and a w a l l  heat transfer 

The temperature across the entrance section, 

to. It is desired to determine the heat 

The starting point of our study is the equation expressing conservation of  enera 

For f'ully developed hydrodynamic con- for axially symmetric turbulent flow in a pipe. 

ditions, this may be written as 

where a and Eh represent respectively the molecular and eddy diffusivities for  

heat. 

properties are constant, and that viscous dissipation and axial heat diffusion are 

both negligible compared to heat diffusion in the radial direction. 

To obtain the energy equation in this form, it has been assumed that the fluid 

Since equation (1) is linear in the temperature t, we are able to separate the 

general problem which includes both internal heat sources and w a l l  heat transfer into 

two sbpler situations in the following my: 

nal heat generation Q 

is designated as tQ. (b) A problem where there is a w a l l  heat transfer q without 

(a) A problem where there is an inter- 

in an insulated tube (q = 0). For this case, the temperature 
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internal heat generation (Q  = 0). 

Then, from the linearity of the energy equation, the temperature in the combined prob- 

In this instance we denote the temperature by tq. 

lem is simply given by 
4 

? w 
The governing equations and boundary conditions for tQ and 

as follows: 

atQ/& = o at r = ro (insulated w a l l )  

atQ/& = o at r = o (symmetry) 

tQ = tQ,o at x = o (entrance condition) 

and 

( 2 )  

tq may be written 

L A 

(24 

I atq/& = q/k at r = ro (specified heat flux) 

atq/& = o at r = o (symmetry) 
tq = tq,o at x = o (entrance condition) 

where tQ,o and tq,o are chosen so that 

to tQyo + tqyo 

The two problems as defined by equations (3) and (4) w i l l  be analyzed separately. 

We begin by studying the problem of a flow with internal heat sources in an in- 

sulated tukY that is, t&. 

form heat sources, and a solution is obtained which applies both in the entrance 

and f'ully developed regions. 

there are arbitrary variations of the heat sources along the length of the tube. 

Next, the results for the problem of uniform wall heat transfer with no heat sources, 

originally given in reference ( 5 ) ,  are reviewed and generalized to apply for arbi- 

trary longitudinal variations of heat flux. 

First, consideration is given to the situation of uni- 

Then, these results are generalized to the case where 

The linear combination of these 
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solutions i s  then made t o  yield resu l t s  for the  general case of a rb i t r a ry  longi- 

tud ina l  var ia t ions i n  both in te rna l  heat somces and wall heat f lux.  Extension of 

the analysis t o  the s i tua t ion  of rad ia l ly  nonuniform heat sources i s  made i n  the l a s t  

section of the report .  

The eddy diff’usivity which appears i n  equations (3a) and (4a) bears a word of 

discussion. 

heat, ‘h, and the eddy d i f fus iv i ty  for  momentum, em, is  s t i l l  i n  a s t a t e  of uncer- 

Current knowledge of the relat ionship between the eddy d i f fus iv i ty  f o r  

t a in ty .  However, it appears t ha t  fo r  the Prandtl numbers of t h i s  study, 0 .7<_PrI100,  

t he  choice of Eh = Em i s  not unreasonable. Previous application of t h i s  assump- 

t i o n  has l ed  t o  excellent heat t ransfer  predictions over t h i s  Prandtl  number range. 

UNIFORM l3TQUUL HEAT SOURCES I N  AN INSULATED TUBE 

For uniform heating conditions, it i s  well-known that a s  the  flow proceeds far- 

t h e r  and f a r the r  down the  pipe, the heat t ransfer  charac te r i s t ics  approach more and 

more closely t o  a U n i t i n g  condition. This l i m i t  i s  termed the f u l l y  developed heat 

t r ans fe r  s i t ua t ion  and will be denoted by the subscript fd. 

the fully developed condition, we choose t o  write the temperature d is t r ibu t ion  

as the  following sum 

Taking cognizance of 

tQ 

(5) 
* 

tQ = tQ,fd + tQ 

tc 
entrance region and approaches zero as x becomes large.  We now proceed t o  solve 

i s  seen t o  be a difference temperature which plays an important ro le  i n  the 

separately f o r  tQ,fd and t;. 

The N l y  developed solution. - Since energy conservation must everywhere be 

obeyed, it i s  necessary tha t  tQ,fd s a t i s f y  equation (sa) ,  that is ,  

where Q i s  now a constant and ch has been replaced by cm. A charac te r i s t ic  of 

the  fully developed s i tua t ion  fo r  uniform heat sources i s  that the temperature a t  

a l l  points  i n  the cross sect ion rises i n  a l i nea r  fashion along the pipe. Expressed 



- 7 -  

in mathematical terms, the condition becomes 

Q = constant a 
PUCp 

or alternately 

( 7 4  

d 
The radial distribution H(r) must, of course, satisfy the conservation of energy 

equation (6). 

the governing equation for H is found to be 

r;' w 
Substituting (7b) into (6) and introducing dbensionless variables, 

where u+ and r+ are the dimensionless counterparts of u and r as given in the 

symbol list, and y represents a dimensionless diffusivity defined as 

The boundary conditions on H are found from equation (3b) to be 

dH/dr+ = 0 at r+= 0 and r+ = r,' (84 

To obtain solutions of equation (a), it is necessary that the variation of u+ 

and Y with r+ be specified. The turbulent velocity distribution is given by the 

following equations (ref. 6). 

In (g) + 12.8493, 26 5 y+ + u = -  
0.36 

where y+ = r$ - r+, while y is evaluated f'rom (ref. 5) 

r = - 1 + (0.124)2 u+y+[l - e -(0*124)2 u+Y+], O <  y+ < 26 Pr 

y+ > 26 (lob 1 1 
Pr y = - + 0.36~' (1 - y+/r$) - 1, 

* The constant 12.8493, evaluated to higher accuracy for the purpose of this in- 
vestigation, differs slightly from that of reference 6 .  
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The value of y at y+ = 26 is taken as the average of equations (loa) and (lob). 

The minus one term appearing on the right side of equation (lob) is retained for 

26 < y+ < r z / Z  and is deleted for larger values of y+. 

With these expressions for u+ and y, we can proceed with the integration of 

equation ( 8 )  in order to find H. An analytical solution was not possible and a nu- 

merical technique (Kutta-Runge method) had to be employed. Solutions were carried 

out on an SBM 653 electronic computer for Reynolds numbers of 50,000; 100,000; and 

500,000 for Prandtl numbers of 0.7, 1, 10, and 100. The values of H thus obtained 

provide, in conjunction with equation ( T D ) ,  the complete solution for the fully de- 

veloped situation. Space considerations preclude tabulation of the solutions here, 

but they are available as I B M  listings. 

A result of practical engineering importance is the wall-to-bulk temperature dif- 

ference for the rully developed situation. First, the bulk temperature is introduced 

by its definition 

Then, substituting into equation ( T o )  and evaluating 

we find 

H at the tube w a l l  (r+ I r:) 

Using the numerical res Ats fo r  

difference has been plotted on figure 2 as a function of the Reynolds and Prandtl 

H(r:), the dimensionless wall-to-bulk temperature 

numbers. 

We w i l l  make further use of the f'u3-l~ developed solution in later sections. 

The thermal entrance region. - According to equation (5), the temperature dis- 

tribution in the thermal entrance region is found by adding the difference tempera- 

ture tQ to the fully developed temperature tQ,fd. Having determined tQ,fd, we 

now turn our attention to 

* 

t:. 
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To find the governing equation fo r  t;, we introduce equation (5) into the con- 

servation of energy principle (3a). Then, taking account of the fact that tQ,fd 

satisfies (S), it follows 
dr 

? w 

where again dimensionless 

that the 

The 

junction 

N 
1 

8 

and 

or 

where we 

heat source term 

that t; must obey 

variables have been used. It is interesting to observe 

does not appear in equation (13). 

boundary conditions on tt may be derived from equations (3b), in con- 

with (5), giving 

at:/&+ P 0 at r+ = 0 and r+ = r: (14a 1 

at x = O  

ti tQ,o - tQ,fd 

have also used equation (7b) in finding the last expression. 

We seek a 

where $ and 

solution for t; in the form of a product 
Y 

q, respectively, depend on x+ and r+ alone. By substituting into 

the differential equation (13), we find that 

where - - 2p2 is the separation constant arising f r o m  the product solution. From 
Re 

(14a), the boundary conditions on equation (17a) are 

dq/dr+ 0 at r+= 0 and r+ = r: 
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Equations (17a) and (17b) comprise an eigenvalue problem of the Sturm-Liouville 

type. 

values. Hence, the solution for t* can be written as 

Solutions are possible only for a discrete, though infinite, set of p 

where pn are the eigenvalues and qn are the corresponding eigenfunctions of equa- 

tions (17a) and (17b). Since the values of r$ and y in equation (17a) depend on 

the Reynolds and Prandtl numbers, there will be a different set of eigenvalues asso- 

ciated with each choice of these parameters. Utilizing numerical integration, the 

first six eigenvalues and eigenfunctions have been found for the same Reynolds and 

Prandtl numbers previously mentioned. 

the corresponding eigenfunctions are available as LBM tabulations. 

The eigenvalues are listed in table I, while 

The coefficients Dn of equation (15a) are still to be determined. Applying 

the boundary condition at the tube entrance as given by equation (14b), we have 

n= 0 

From this, it follows immediately from the properties of the Sturm-Liouville 

that 
f ” [-H(r+)] r+u+ qn dr+ 
0 Dn = ,+ 

It is seen that the computation of the 

developed temperature distribution. With the p,, vn, and Dn determined, the dif- 

ference temgerature 

the complete solution of the problem. 

Dn involves an integration of the M l y  

t: is known from equation (15a), and we may now proceed with 

The complete temperature solution. - Combining the results of the preceeding 
sections in accordance with equation ( 5 ) ,  we are able to write an expression f o r  the 
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temperature d is t r ibu t ion  which applies both in the  entrance and f u l l y  developed 

regions, that is ,  

O f  pa r t i cu la r  p rac t i ca l  

temperatures a t  a l l  s ta t ions  

2 
4Pn x --- 

RePr3 + H ( r + )  + * Dn%(r+)e  Re 
n= 0 

i n t e r e s t  i s  the  difference between the w a l l  and bulk 

along the  pipe. 

- 
Evaluating equation (19) a t  the w a l l  

(r" = r:) and subs t i tu t ing  t h e  bulk temperature from equation (11) yields 

A convenient rephrasing of this r e s u l t  may be 

developed wall-to-bulk temperature difference 

= 1 +  

car r ied  out by introducing the  f u l l y  

from (E) ,  giving 
m n 

4P: x - - -  2 Ene Re d 

n=O 

where the product Dn%(r$) has been abbreviated by %. Numerical values of E, 

have been l i s t e d  i n  tab le  I1 as a function of the  Reynolds and Prandt l  numbers, while 

H(r:) may be read d i r e c t l y  as the  o r d i n a t e  o f  f igure 2. Using these numerical data, 

t he  r a t i o  of temperature differences given by (2Oa)  has been p lo t t ed  on f igures  3(a) 

and 3(b) as a flmction of distance along %he tube fo r  parametric values of  t h e  Reyn-  

olds and Prandt l  numbers*. The information given on these p lo ts ,  used i n  conjunction 

with figure 2, permits rapid evaluation o f t h e  wall-to-bulk temperature difference a t  

various s t a t ions  along the  tube. 

We can define a thermal entrance length as the  heated length required f o r  

(tQ,w - t&,b)  t o  approach t o  within 5 percent of t he  r ~ l l y  developed value. 

l i n e  has been drawn on f igures  3(a) and 3(b)  t o  f a c i l i t a t e  finding the  entrance length.  

A dashed 

* The curves do not extend a l l  the way t o  x = 0 because the  se r i e s  has been 
truncated. 
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So, for example, for Re = 50,000 and Pr = 100, the entrance length is 15 diameters; 

while for Re = 50,000 and Pr = 0.7, the entrance length is 2 1  diameters.. A very 

significant finding is that, especially for high Prandtl numbers, these entrance 

lengths are substantially greater than those encountered in turbulent pipe flow with 

uniform w a l l  heat transfer or uniform wall temperature. 

trance length will be emphasized in a later section when the results f o r  uniform wall 

heat flux are given. 

These differences in en- 

ARBITRARY LONGITUDINAL REAT SOURCE VARIATIONS IN AN INSULATED TUBE 

We now proceed to generalize these results to apply for arbitrary variations of 

the internal heat generation along the tube. 

that 

heating process in which there is no internal heat generation up to a position 

then, beyond x, there occurs a uniform internal heating of magnitude dQ. The tem- 

perature response to such a process can be found by applying equation (19). 

For the purposes of analysis, suppose 

Q(x) can be represented as in figure 4. Envision for the moment an elementary 
- 
x; 

This elementary heating process can be considered as a differential step in the heat 

source variation pictured on figure 4. By integrating the separate effects of these 

elementary steps, we are able to find the temperature distribution at any position 

corresponding to a prescribed upstream variation of 

side can be rephrased into a more convenient form by integrating by parts. 

sult of this operation is 

Q(x). The integral of the right 

3ie re- 
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Now, turning t o  the  wall-to-bulk temperature difference,  we evaluate equation 

( 2 2 )  a t  r+ = r: and introduce the  bulk temperature by i t s  def in i t ion  

2 Numerical values of En and pn a r e  given i n  t ab le s  I and 11, so that the  integra-  

t i o n  can be car r ied  out ( e i the r  ana ly t ica l ly  o r  numerically) f o r  any prescribed var i -  

a t ion  of t he  in t e rna l  heat generation a(:). 
W A L L  HEAT TRANSFER WITHOUT INTERNAL HEAT GENERATION 

Uniform w a l l  heat flux. - An analysis of turbulent  pipe flow with uniform wall 

heat f l ux  has been given i n  reference 5 and only the results need be reviewed here.  

F i r s t ,  f o r  t he  f'ul.1~ developed heat t ransfer  condition, t h e  wall-to-bulk temper- 

a tu re  difference corresponding t o  the uniform heating a t  the  w a l l  has been p lo t t ed  

on f igure 5 f o r  the  same Reynolds and Prandtl number ranges as heretofore con- 

sidered*. It may be noted t h a t  the  ordinate i s  proportional t o  the  reciprocal  of 

the  f u l l y  developed Nusselt number, which has i t s  usual def in i t ion  

while t he  bulk temperature f o r  uniform heat flux i s  given by 

Unpublished experimental data  of Presler  and Loeffler ( 7 )  a l s o  appear on figure 5 and 

show excel lent  agreement with the  theory. 

perimental correlat ion were evaluated a t  the f i l m  temperature. 

The f l u i d  propert ies  appearing i n  the  ex- 

* The r e s u l t s  of reference 5 have been extended t o  cover the  P r  = 1 case. 
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R e s u l t s  fo r  the  wall-to-bulk temperature difference which apply a l l  along the  

tube axe given i n  the  form of the  r a t i o  

!tq,w - tq,b )/(tq,w - tq,b)fd 

which i s  p lo t ted  on figures 6 ( a )  and 6(b)  as a function o f  x/d 

ues of t h e  Reynolds and Frandtl  numbers. 

f igure  5, permits rapid computation of those temperature results of greatest  p rac t i -  

c a l  i n t e r e s t .  

fo r  parametric val- 

The use of f igure 6, i n  conjunction with 

The ordinate of  f igure 6 can a l so  be recognized as the  r a t i o  

N'fd/Nu 

where N u  i s  the loca l  Nusselt number defined by equation (25) with subscripts fd 

deleted.  

For this s i tua t ion  of uniform wall heat flux, a thermal entrance region can be 

defined as the length required f o r  (tq,w - tq,h ) t o  approach within 5 percent of i t s  

r u l l y  developed value, o r  a l te rna te ly ,  as the  length required f o r  the  Nusselt number 

t o  approach within 5 percent of i t s  f'ully developed value. A dashed l i n e  has been 

drawn on figure 6 t o  a i d  i n  determining the  thermal entrance lengths. 

figure 6 with figure 3, especial ly  for  the  high F'randtl numbers, ve r i f i e s  our pre- 

vious statement about the considerably greater  entrance lengths associated with the  

case o f  i n t e rna l  heat generation. Further, it i s  in te res t ing  t o  observe t h a t  t he  

Comparison of 

Reynolds number appea-- t o  play a m.xh greater  ro l e  i n  determining the entrance 

lengths fo r  t he  heat, , c iera t ion  case. 

'Vhile the  im2ortant r e su l t s  of reference 5 have been graphed on figures 5 and 6, 

it will a l s o  be useful. t o  give t h e i r  ana ly t ica l  representation as follows 
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2 

pn where 

directly from the ordinate of figure 5. 

and Fn are listed in tables I* and 111, respectively, and G(r:) is read 

Arbitrary wall heat flux. - Following a procedure identical to that outlined 

previously, the results for the uniform heat flux case as expressed by equation (26) 

may be generalized to apply to arbitrary longitudinal variations 

sidering an elementary heating process and then integrating the effects of many such 

q(x). First con- 

+ 

w processes, we find that 
LD 
r;' 

where 
X 

tq,b = tq,o + 4 k Re& j -  q(T)aX (28) 
0 

Equation (27) gives the wall temperature at any position for a prescribed upstream 

variation in wall heat flux. Inasmuch as the constants pn 2 and Fn are available 

in tables I and 111, the integration can be carried out as soon as the variation of 

q is given. 

COMBINED I N T m L  SOURCES AND WALL HEAT TRANSFER 

We can now proceed to write the solution for the situation where internal heat 

generation and w a l l  heat transfer occur simultaneously. According to equation (2), 

results for this combined problem are found by adding the contributions due to each 

of the separate problems. 

The most important result of practical interest is the wall temperature variation 

corresponding to given heating conditions. 

the w a l l  and bulk temperatures 

To compute this, we apply equation (2) to 

* The P c  values listed here are slightly refined compared with those of ref. 5. 
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Then, subtracting the second of these from the first gives 

t, - tb = (tQ,w - tQ,b) -t (tq,w - tq,b) 
Consideration is first given to the situation where both the internal heating 

and the w a l l  heat flux are uniform along the length. 

tion (3Oa) can be recast into a form more convenient for rapid calculations as 

follows : 

For these circumstances, equa- 

(30b) 
where the subscript fd denotes the f‘ully developed situation. Numerical values of 

the first square bracket may be read directly from figures 3(a) and 3(b); while the 

second square bracket is read directly from figures 6(a) and 6(b). 

oped temperature differences (tQ,w - tQ,b)fd and (tq,w - tq,b)fa are found from 

figures 2 and 5,  respectively. 

uniform heat generation and w a l l  heating is computed from 

The fully devel- 

The bulk temperature for the situation of combined 

So, with this information, equation (30b) may be easily evaluated to give the w a l l  

temperature at various stations along the tube. 

Now, we tu rn  to the situation where the internal heating and w a l l  heat transfer 

vary in an arbitrary way along the length. 

temperature differences (t - t&,b) and (tq,w - tq,b) are respectively evaluated 

from equations (24) and (27). The numerical values of fig, Xn, m d  Fn needed in 

the computations are listed in tables I, 11, and 111, wbile the bulk temperature cor- 

Equation (30a) is then applied, and the 

Q, W 

responding to the longitudinally nonuniform heating is given by 
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Once the longitudinal variations are prescribed, equation (3Oa) may then be used to 

compute the w a l l  temperature at various positions. 

RADIAL VARIATIONS OF THE INTERNAL HEAT GENERATION 

In this paper, numerical results have been provided for  the case of internal 

heat sources which are uniform across the tube cross section. However, the results 

can be extended to heat sources which vary in the radial direction. 

the fully developed temperature distribution is given by 

In this instance, 
d 
Lo 
rl 

A 

n 

4 
RePr P- + M ( r )  (33 1 

which is of a form similar to equation ( T o ) .  The mction M ( r )  must be found by in- 

tegrating the equation 

- 2u+ = - rz -[. d + r ?] dM + - r: 
Re& r &+ 2Pr 

Q(r+) (34) 

With 

same boundary conditions as equation (8). 

Q(r) specified, this can be solved numerically in the same manner and with the 

The eigenvalues and eigenflulctions arising in the solution of the difference 

temperature t; remain unchanged, but the Dn in equation (18b) now have to be 

evaluated using - M ( r + )  in place of -H(r+). Hence, for the difference temperature 
* tQ, we can write 

where 

* 
L 

"Q 

2 k j L - O  &r & 

0 

m 

n= 0 

- 
e 

r+ 
o [-M(r+dr+u+cqn tir+ 

DA = ,+ 

4p$+ 

Re (35 1 
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r.iese expressions can be evaluated for any prescribed radial heat source vari- 

ation, and the extension to longitudinal variations proceeds in the same manner as 

described previously for uniform heat sources. 
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P r  

1387 3730 7040 11,330 16,600 
1380 3705 6981 11,220 16,410 
1366 3651 6850 10,960 15,950 
1364 3645 6835 10,930 15,880 
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1.0 
10.0 
100.0 

Pr 
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10.0 
100.0 

TABLE I. - LISTING OF EIGENVALUES, p: 

B$  Pf 4 8 5  842 @ 
0 2545 6822 12,850 20,630 30,190 
0 2538 6796 12,790 20,520 30,000 
0 25 24 6742 12,660 20,270 29,560 
0 2522 6737 12,640 20,240 29,510 

(a) Re = 50,000. 

Pr PG 

0.7 0 
1.0 0 
10.0 0 
100.0 0 

@f 4 B S  8: @ 
10,680 28,520 53,560 85,810 125,300 
10,670 28,490 53,490 85,690 125,100 
10,660 28,440 53,360 85,440 124,700 
10,660 28,430 53,350 85,410 124,600 



TABLE 11. - VALUES OF THE COEFFICIENTS En 

(a) Re = 50,000. 

Pr 

0.7 
1.0 
10.0 
100.0 

-Eo -E1 -E2 -E3 -E4 -E5 

0 0.1753~10-~ 0.5039~10-~ 0.2405~10-~ 0.1422~10-~ 0.9719~10-~ 
0 . 1242x10-3 .3616~10-~ .1752~10-~ .1055~10-~ .7362~10-~ 
0 . 1293X10-4 .3973~10-~ .2071~10-~ .1379~10-~ .1093~10-~ 
0 .1328x10-5 .4263x10-6 .2377~10-~ .1734~10-~ .1576~10-~ 

~ 

( b )  Re = 100,000. 

PP 

0.7 
1.0 
10.0 

-Eo -E1 -E2 -E3 -E4 -E5 

0 0.8775~10-~ 0.2454~10-~ 0.1128~10-~ 0.6421~10-~ 0.4180~10-~ 
0 .6186X10-4 .1742~10-~ .8O76x1Ob5 .4640~10-~ .3056~10-~ 
0 .6323~10-~ .1831~10-~ .8799~10-~ .5304~10-~ .3708~10-~ 

PP 

0.7 

Pr I -Eo I -E1 

-Fo -F1 -F2 -F3 -F4 -F5 

0 0.3507~10-~ 0.1848X10-2 0.1278~10-~ 0.9842~10-~ 0.8209~10-~ 

I I 

1.0 
10.0 
100.0 

~~ 

0.1781x10-4 
.1249~10-~ 
. 1256x10-5 
. 1259X10-6 

0 .2505~10-~ .1342~10-~ .9486~10-~ .7480~10-~ .6409~10-~ 
0 . 2653X10-3 .1546~10-~ .1213~10-~ .1106~10-~ .1109~10-~ 
0 .2748x10-4 .1742x10-4 .1513~10-~ .1614~10-~ .1962~10-~ 

TABLE 111. - VALUES OF THE COEFFICIENTS Fn 

(a) Re = 50,000. 

PP -Fg 

0.7 0 
1.0 0 
10.0 0 
100.0 0 

-F1 -F2 -F3 -F4 -F5 

0.1947X10-2 0.1034X10-2 0.7110~10-~ 0.5407~10-~ 0.4400~10-~ 
. 1375X10-2 .7375~10-~ .5136~10-~ .3963~10-~ .3277~10-~ 
.1426~10-~ .7971~10-~ .5887~10-~ .4881~10-~ .4403~10-~ 
.1455G0-4 . “1 on 7 C v 7  I “I1.L” n-5 + 6575~lO-~ .6609~10-~ 1 .5836~10-~ 

PT 

0.7 
1.0 
10.0 
100.0 

-Fg -F1 -F2 -F3 -F4 -F5 

0 0.4786~10-~ 0.2590~10-~ 0.1796~10-~ 0.1374~10-~ 0.1114~10-~ 
0 . 3348X10-3 . 1818X10-3 .1265~10-~ .9715~10-~ .7893x 
0 .3389X10-4 .1860X10-4 .1312~10-~ .1024~10-~ .8479~10-~ 
0 .3401X10-5 .1877X10-5 .1333~10-~ .1048~10-~ .8763~10-~ 





Re 
Fig .  2. - Fully developed wall-to-bulk temperature difference fCiF 

uniform internal heat source in an Insulated tube. 
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Fig. 4. - Representation of an arbi- 
trary longitudinal internal heat 
source distribution. 
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Fig. 5. - Fully developed wall-to-bulk temperature difference 
for uniform wall heat flux and no internal heat source. 
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